Source code for postmd.animate.animate

import os
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation

[docs] class BaseAnimate: def __init__(self, *args, fps=20, dpi=72): if len(args) == 1: # Only y-data provided self.y = np.array(args[0]) self.time_steps = len(self.y) self.x = np.arange(self.time_steps) elif len(args) == 2: # Both x and y data provided self.x, self.y = map(np.array, args) self.time_steps = len(self.y) assert len(self.x) == self.time_steps, "The length of x must match the length of y" else: raise ValueError("Invalid input. Provide either y-axis data or both x and y-axis data.") self.fps = fps self.dpi = dpi self.fig, self.ax = plt.subplots() self.line, = self.ax.plot([], [], lw=2) def _init(self): """init the animation """ pass def _update_data(self, n): pass def _update_frame(self, n): _xdata, _ydata = self._update_data(n) self.line.set_data(_xdata, _ydata) if self.range_mode == 'auto': # Dynamically update the y-axis limits self.ax.relim() self.ax.autoscale_view() return self.line,
[docs] def show(self): """show the animation of data. """ ani = FuncAnimation(self.fig, self._update_frame, frames=range(self.time_steps), init_func=self._init, blit=False, interval=1000/self.fps, repeat=False) plt.show()
[docs] def save(self, filename, output_format=None): """save the animation of data to file. Args: filename (str): file name to output output_format (str, optional): the output format. Now only support ``gif``, ``mp4``, and ``avi``. Defaults to ``None``, meaning the output format is inferred from the filename extension. """ self.output_format=output_format if self.output_format is None: self.output_format = os.path.splitext(filename)[-1][1:] # file extension ani = FuncAnimation(self.fig, self._update_frame, frames=range(self.time_steps), init_func=self._init, blit=True, interval=1000/self.fps, repeat=False) if self.output_format.lower() == 'gif': ani.save(filename, writer='pillow', fps=self.fps) elif self.output_format.lower() in ['mp4', 'avi']: from matplotlib.animation import FFMpegWriter writer = FFMpegWriter(fps=self.fps) ani.save(filename, writer=writer) else: raise ValueError(f"Unsupported output format: {self.output_format}") print(f"Animation saved to file: {filename}")
[docs] class AppendAnimate(BaseAnimate): def __init__(self, *args, fps=20, dpi=72, range_mode='auto'): """animate data by appending data to the figure. Args: *args: a set of y data ``(ydata1, ydata2, ...)``, or ``x, (ydata1, ydata2, ...)``. Each `ydata` should be a 1D array. fps (int, optional): Frames per second (FPS) setting for animation. Defaults to ``20``. dpi (int, optional): Dots per inch (DPI) resolution for animation. Defaults to ``72``. range_mode (str, optional): Determines the behavior of x and y limits in the animation. Defaults to ``'auto'``. - If set to ``'auto'``, the x and y limits will automatically adjust to the data range. - If set to ``'fix'``, the x and y limits will be fixed to a specific range. The fixed range is from the min to max of data plus 5% margin. """ super().__init__(*args, fps=fps, dpi=dpi) self.range_mode = range_mode if range_mode == 'fix': self._range_mode_fix() def _range_mode_fix(self): # Set fixed x-axis limits (assuming the provided x data already represents time steps appropriately) x_min, x_max = np.min(self.x), np.max(self.x) padding = (x_max - x_min) * 0.05 # Add 5% margins on both sides self.ax.set_xlim(x_min - padding, x_max + padding) # Calculate and set fixed y-axis limits y_min, y_max = np.min(self.y), np.max(self.y) padding = (y_max - y_min) * 0.05 # Add 5% margins on both sides self.ax.set_ylim(y_min - padding, y_max + padding) def _init(self): self.line.set_data([], []) return self.line, def _update_data(self, n): _xdata=self.x[:n+1] _ydata=self.y[:n+1] return _xdata, _ydata
[docs] def show(self): super().show()
[docs] def save(self, filename, output_format=None): super().save(filename, output_format)
[docs] class CumAnimate(BaseAnimate): def __init__(self, *args, fps:int=20, dpi:int=72, range_mode:str='auto', mode:str='mean'): """The cumulative animation of a set of data, which is usually for show the change of data with number of experiments or cumulative average. Args: *args: a set of y data ``(ydata1, ydata2, ...)``, or ``x, (ydata1, ydata2, ...)``. Each `ydata` should be a 1D array. fps (int, optional): Frames per second (FPS) setting for animation. Defaults to ``20``. dpi (int, optional): Dots per inch (DPI) resolution for animation. Defaults to ``72``. range_mode (str, optional): Determines the behavior of x and y limits in the animation. Defaults to ``'auto'``. - If set to ``'auto'``, the x and y limits will automatically adjust to the data range. - If set to ``'fix'``, the x and y limits will be fixed to a specific range. The fixed range is from the min to max of data plus 5% margin. mode (str, optional): ``"mean"``, ``"sum"`` or ``"mean"``. Defaults to `None`. - If ``mode="mean"``, the cumulative average of ``(ydata1, ydata2, ...)`` will display in order as animation. The n-th frame is ``(ydata1+ydata2+...+ydatan)/n`` - If ``mode="sum"``, the cumulative summation of ``(ydata1, ydata2, ...)`` will display in order as animation. The n-th frame is ``ydata1+ydata2+...+ydatan`` - If ``mode="sequence"``, ``ydata1``, ``ydata2``, ... will display in sequence as animation """ super().__init__(*args, fps=fps, dpi=dpi) self.range_mode = range_mode self.mode = mode self._post_process() if range_mode == 'fix': self._range_mode_fix() def _post_process(self): if self.mode == "sequence": self.ydata = self.y elif self.mode == 'sum': self.ydata = np.cumsum(self.y, axis=0) elif self.mode == 'mean': self.ydata = np.cumsum(self.y, axis=0) / (np.arange(1, self.time_steps + 1).reshape(-1,1)) def _range_mode_fix(self): x_min, x_max = np.min(self.x), np.max(self.x) padding = (x_max - x_min) * 0.05 # Add 5% margins on both sides of x axis self.ax.set_xlim(x_min - padding, x_max + padding) y_min, y_max = np.min(self.ydata), np.max(self.ydata) padding = (y_max - y_min) * 0.05 # Add 5% margins on both sides of y axis self.ax.set_ylim(y_min - padding, y_max + padding) def _init(self): self.line.set_data([], []) return self.line, def _update_data(self, n): _ydata = self.ydata[n,:] return self.x, _ydata
[docs] def show(self): super().show()
[docs] def save(self, filename, output_format=None): super().save(filename, output_format)